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Abstract—Bandwidth reservation is envisioned to be a value-
added feature for the cloud provider in the following years. We
consider the bandwidth reservation trading between the cloud
provider and tenants as an open market, and design practical
mechanisms under an auction-based market model. To the best
of our knowledge, we propose the first family of Strategy-prOof
Auction mechanisms for cloud bandwidth Reservation (SOAR).
First, we present SOAR-VCG that achieves both optimal social
welfare and strategy-proofness when the tenants accept partially
filled demands. Then, we propose SOAR-GDY that guarantees
strategy-proofness and achieves good social welfare when the
tenants do not satisfy with partial bandwidth reservations. We
do not only theoretically prove the properties of SOAR family
of auction mechanisms, but also extensively show that they
achieve good performance in terms of social welfare, bandwidth
satisfaction ratio, and bandwidth utilization in the simulation.

I. INTRODUCTION

One of the most important business paradigms brought by
cloud computing is Infrastructure as a Service (IaaS), by which
virtual machines that abstract bundles of computation, storage,
and network resources, are provided to applications/tenants.
More and more Internet applications move their platform to
cloud providers. For example, Netflix moved its data storage
system, streaming servers, encoding engine, and other major
modules to Amazon Web Services (AWS) in 2010.

A number of such applications that provide online streaming
services need guaranteed bandwidth to maintain their quality
of service (QoS) at required level. However, in contrast to
the CPU or storage resources, the bandwidth resource cur-
rently provided by major cloud providers does not have any
quantitative guarantee. Fortunately, recent developments of
data center networking techniques make it possible to offer
bandwidth reservations for tenants [1], [2]. Therefore, we
believe that there will be a newly emerged market, in which the
tenants purchase bandwidth reservations from cloud providers
to guarantee their QoS requirements.

Recently, Niu et al. [3] elegantly introduced a profit making
broker to negotiate the bandwidth reservation price with the
tenants and lead the system to converge to a unique Nash
equilibrium (NE). However, NE may not be an ideal solution
to the problem of cloud bandwidth reservation due to three
reasons [4]: First, NE is not a very strong solution concept in
game theory. NE does not hold when the players do not have
belief on the others’ behaviors. Second, NE usually cannot
guarantee optimal social welfare.
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We consider the bandwidth reservation trading between a
cloud provider and a number of tenants as an open market,
and introduce auction to strengthen the marketing mechanism.
Designing a practical auction mechanism for cloud bandwidth
reservation has two major challenges. One major challenge
is strategy-proofness, which guarantee that only reporting
true valuation as a bid can maximizes one’s utility and no
participant can benefit herself by manipulating.The other major
challenge is the optimality of the auction outcome, which is
an allocation of the cloud bandwidth. In general case, finding
the optimal cloud bandwidth reservation is a combinatorial
problem that cannot be solved in polynomial time and classic
strategy-proof auction mechanisms cannot be applied.

In this paper, we model the problem of cloud bandwidth
reservation as a sealed-bid auction, and carry out in-depth
study of mechanism design on the problem. We propose
SOAR, which is the first family of Strategy-prOof Auction
mechanisms for cloud bandwidth Reservation. SOAR con-
tains two auction mechanisms, SOAR-VCG and SOAR-GDY.
SOAR-VCG is a VCG-based auction mechanism for cloud
bandwidth reservation, achieving both optimal social welfare
and strategy-proofness when the tenants accept partially filled
demands. When the tenants are single-minded, meaning that
they cannot be satisfied by partial bandwidth reservations,
SOAR-GDY can be applied to guarantee strategy-proofness
and to achieve good social welfare in most cases. Finally,
we implement these two auction mechanisms and extensively
evaluate their performance. Our evaluations results show that
they achieve good performance in terms of social welfare,
bandwidth satisfaction ratio, and bandwidth utilization. We
note that SOAR can also be applied to provisioning other kinds
of cloud resources, e.g., CPU, memory, and storage.

The rest of this paper is organized as follows. We present
technical preliminaries in Section II. We consider the tenants
who would like to pay for every unit of bandwidth reserved
up to her maximum demand and present SOAR-VCG in
Section III. In Section IV, we present SOAR-GDY, for the case
that each tenant can only be satisfied when all her demanded
bandwidth is reserved. We show evaluation results and related
works Section V and Section VI, respectively. The conclusion
and possible future work are given in Section VII.

II. TECHNICAL PRELIMINARIES

In this section, we present our auction model for the
problem of cloud bandwidth reservation, and review some
useful solution concepts from classic mechanism design.

A. Auction Model

As shown in Fig. 1, we consider an open market for cloud
bandwidth reservation, in which there is a cloud provider
having multiple data centers and a number of cloud tenants
renting cloud bandwidth to provide their online streaming



2

services, such as online video. The data centers of the cloud
provider are geographically located, and have different capac-
ities of bandwidth. The cloud tenants, especially the providers
of online video streaming services, need to compete with each
other to reserve bandwidth to guarantee their requirements
on quality of service (QoS) of data rate. The cloud provider
manages the allocation of available bandwidth of the data
centers, according to the cloud tenants’ bandwidth demands.

Fig. 1. An open market for cloud bandwidth reservation with m data centers
and n tenants.

We model the problem of cloud bandwidth reservation as
a sealed-bid auction, in which all the buyers simultaneously
submit sealed bids periodically, so that no buyer knows the
bid of any of the other participants. The cloud provider is
assume to be trustworthy, and let it make the decision on the
allocation of reserved cloud bandwidth and the charge to each
tenant. The auction is carried out periodically (e.g., every hour
or day) or on demand (e.g., one of the cloud provider raise a
request for bandwidth adjustment).

Cloud Provider: A cloud provider (e.g., Azure, Amazon
EC2, and Google AppEngine) possesses a number of data
centers geographically located all over the world, denoted by
M = {1, 2, . . . ,m} . Each data center l ∈ M may have a
different outgoing bandwidth capacity of Bl , and a serving

cost of cl per unit of bandwidth.
#–

B = (B1, B2, . . . , Bm)
and #–c = (c1, c2, . . . , cm) denote the vector of bandwidth
capacities and per unit bandwidth costs, respectively.

Tenant: There is a set of tenants, denoted by N =
{1, 2, . . . , n} , who are online streaming service providers
(e.g., Netflix, Hulu, and Youku). The tenants compete to
reserve bandwidth from the cloud provider to serve their
customers. Each tenant i ∈ N demands to reserve bandwidth
di to satisfy her requirement on QoS, and has a valuation
of vi on each unit of bandwidth reserved. This valuation
can be derived from the revenue obtained by a tenant for
serving her subscribers, and is the private information to the
tenant. We denote the valuation profile of the tenants by #–v =
(v1, v2, . . . , vn) . In the auction, the tenants simultaneously

submit their sealed bids
#–

b = (b1, b2, . . . , bn) , which are not
necessarily equal to their valuations, the bandwidth demands
#–

d = (d1, d2, . . . , dn) , to the cloud provider. In Section III,
we consider the case that each tenant would like to pay for
every unit of bandwidth reserved up to her maximum demand.
In Section IV, we consider the case, in which each tenant can
only be satisfied when all her demanded bandwidth is reserved.

The cloud provider determines the set of winning tenants
W , bandwidth reserved for the tenants A = (ali)i∈N,l∈M ,
and the charge to the tenants #–p = (p1, p2, . . . , pn) . Here,
ali denotes the bandwidth reserved in the data center l for
the tenant i , and pi denotes the per unit bandwidth charge
for the tenant i . To guarantee the profit of the cloud provider,
we require that the charge must be no less than a predefined
constant p0 > 0 (e.g., p0 = maxl∈M(cl) ).

The utility ui of the tenant i is defined to be the difference
between her valuation on the reserved bandwidth and the
charge, namely ui = ai(vi − pi) , where ai =

∑

l∈Mi
ali is

the total amount of bandwidth reserved for the tenant i .
We assume that the tenants are rational, that means the

only objective of each tenant is to maximize her own utility.
A tenant has no preference over different outcomes, if the
utility is same to the tenant herself. The tenants may try to
manipulate their bids in order to seek for higher utilities, but
do no cheat about their bandwidth demands. We also assume
that the tenants do not collude with each other.

In contrast to the tenants, the auction’s objective is to
maximize social welfare, which is defined as follows.

Definition 1 (Social Welfare). The social welfare in an auction
for cloud bandwidth reservation is the difference between the
sum of tenants’ valuations and the sum of costs on the reserved
bandwidths: SW =

∑

i∈W

∑

l∈Mi
(vi − cl)a

l
i.

B. Solution Concepts

A strong solution concept from mechanism design is dom-
inant strategy.

Definition 2 (Dominant Strategy [5]). Strategy (bid in this
paper) si is the player (tenant in this paper) i ’s dominant
strategy, if for any strategy s′i 6= si and any other players’
strategy profile s−i : ui(si, s−i) ≥ ui(s

′
i, s−i).

Intuitively, a dominant strategy of a player/tenant is a
strategy/bid that maximizes her utility, regardless of what
strategy/bid profile the other players/tenants choose.

The concept of incentive-compatibility means that there is
no incentive for any player/tenant to lie about her private
information, and thus revealing truthful information is the
dominant strategy for every player/tenant. An accompanying
concept is individual-rationality, which means that for every
player/tenant participating the game/auction is expected to gain
no less utility than staying outside. Now we introduce the
definition of Strategy-Proof Mechanism.

Definition 3 (Strategy-Proof Mechanism [5]). A mechanism
is strategy-proof when it satisfies both incentive-compatibility
and individual-rationality.

The objective of our work is to design strategy-proof auction
mechanisms for cloud bandwidth reservation.

III. VCG-BASED AUCTION

In this section, we consider the case that each tenant would
like to pay for every unit of bandwidth reserved up to her
maximum demand. We present SOAR-VCG, a VCG-based
auction mechanism for cloud bandwidth reservation, which
achieves both optimal social welfare and strategy-proofness.
SOAR-VCG is composed of optimal bandwidth reservation
and VCG-based charging.

A. Optimal Bandwidth Reservation

Given the bandwidth capacity profile
#–

B and per unit band-
width cost profile #–c of the data centers, and demand profile
#–

d and bid profile
#–

b from the tenants, we model the problem
of social welfare maximizing bandwidth reservation as a linear
program LP . The objective is to maximize the social welfare.
Here, we use bi instead of vi to calculate social welfare,
because the strategy-proof mechanism shown in Section III-B
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will guarantee that bidding bi = vi is the dominate strategy
of each tenant i ∈ N . Constraint (1) indicates the bandwidth
capacity limitation on the data centers. Constraint (2) indi-
cates the maximal demands from the tenants. Constraint (3)
guarantees that each bandwidth reservation is non-negative.

Objective: Maximize SW =
∑

i∈N

∑

l∈Mi

(bi − cl)a
l
i.

Subject to:
∑

i∈N∧l∈Mi

ali ≤ Bl, ∀l ∈ M (1)

∑

l∈Mi

ali ≤ di, ∀i ∈ N (2)

ali ≥ 0, ∀i ∈ N, ∀l ∈ Mi (3)
We can get the optimal bandwidth reservation A⋆ to achieve

optimal social welfare by solving the above linear program in
polynomial time.

B. VCG-Based Charging

When there exists a polynomial-time algorithm to compute
the optimal solution for an allocation problem, the celebrated
VCG mechanism [6] can be applied to calculate the charge
to achieve the strategy-proofness. Suppose A⋆ and A′ be
the bandwidth reservation outcome matrix when the tenant i
participates the auction or not, respectively. Then the VCG
charge p⋆i of the winning tenant i is

p⋆i =

∑

j 6=i

∑

l∈Mj

(bj − cl)a
′l
j −

∑

j 6=i

∑

l∈Mj

(bj − cl)a
⋆l
j +

∑

l∈Mi

cla
⋆l
i

∑

l∈Mi

a⋆li
.

Intuitively, the VCG charge p⋆i of the winning tenant i
is the difference between the two social welfare excluding
herself, when she participates the auction or not. It cannot
happen that 0 < p⋆i < p0 , because bi ≥ p0, ∀i ∈ N . Then,
the charge pi for the winning tenant i is pi = max{p⋆i , p0}.
For the losers, they are free of any charge.

Since SOAR-VCG has an optimal allocation and calculates
the charge based on VCG, we have the following conclusion.

Theorem 1. SOAR-VCG is a strategy-proof and optimal
auction mechanism for cloud bandwidth reservation.

IV. GREEDY AUCTION

In reality, some tenants may have strict requirement on QoS,
and they can only be satisfied and would like to pay for the
reserved bandwidth, when all of the demanded bandwidth is
reserved. In this section, we consider the situation that each
tenant pays for the reserved bandwidth only when her demand
is fully filled, and model the social welfare maximization
problem as the following binary programm BP .

Objective: Maximize SW =
∑

i∈N

∑

l∈Mi

(bi − cl)a
l
i.

Subject to:
∑

i∈N∧l∈Mi

ali ≤ Bl, ∀l ∈ M (4)

∑

l∈Mi

ali = xidi, ∀i ∈ N (5)

xi ∈ {0, 1}, ∀i ∈ N (6)
The above binary programm version of the social welfare

maximization can be reduced to the Generalized Assignment
Problem (GAP), which has been proven to be NP-hard [7].
Considering the computational intractability of the problem
of social welfare maximization and infeasibility of VCG
mechanism, we propose SOAR-GDY, an alternative greedy-
based auction mechanism for cloud bandwidth reservation.

A. Design of SOAR-GDY

Similar to SOAR-VCG, SOAR-GDY also contains two
components: greedy bandwidth reservation and charging.

1) Greedy Bandwidth Reservation: Intuitively, SOAR-GDY
tries to greedily reserve the bandwidth for the tenants that
may bring higher social welfare. Since the part of social
welfare achieved by the bandwidth reservation of the tenant
i depends on the outcome of bandwidth allocation, which
is not known before running the algorithm, we approximate
the social welfare that might be achieved by the tenant i by

introducing a virtual bid b̂i =
di√
|Mi|

(

bi −
∑

l∈Mi
clBl

∑
l∈Mi

Bl

)

.

SOAR-GDY sorts the tenants by their virtual bids in non-
increasing order, and then greedily reserves bandwidths ac-
cording to the tenants’ demands following the ordering.

Algorithm 1 shows the pseudo-code of SOAR-GDY’s band-
width reservation algorithm. After calculating the virtual bid of
each tenant (Line 2-4), SOAR-GDY sorts the tenants according
to their virtual bids in non-increasing order (Line 5) β . Then,
SOAR-GDY checks the tenants one by one following the order
β to see whether each tenant i ’s demand can be satisfied by
the rest of the bandwidth. If yes, SOAR-GDY adds the tenant
i to the set of winners, and allocates the bandwidth with the
smallest cost to the tenant i . Otherwise, SOAR-GDY simply
ignores the tenant i (Lines 6-15). Finally, SOAR-GDY outputs
the set of winning tenants W and the matrix of bandwidth
reservation A . The runtime of Algorithm 1 is O(mn) .

Algorithm 1: SOAR-GDY Bandwidth Reservation

Input: Vector of bandwidth capacities
#–

B , vector of per unit bandwidth

costs #–c , vector of bids
#–

b , vector of demands
#–

d .
Output: Set of winning tenants W , matrix of bandwidth reservation

A .
1 W← ∅ ; A← 0n,m ;
2 foreach i ∈ N do

3 b̂i ← di√
|Mi|

(

bi −
∑

l∈Mi
clBl

∑
l∈Mi

Bl

)

;

4 end

5 Sort b̂i, i ∈ N in non-increasing order β : b̂′
1
≥ b̂′

2
≥ . . . ≥ b̂′n ;

6 for i = 1 to n do
7 if

∑

l∈Mi
Bl ≥ di then

8 W←W ∪ {i} ;
9 while di > 0 do

10 l← argmin
l∈Mi

(cl) ; Mi ←Mi \ {l} ;

11 ali ← min(Bl, di) ;

12 di ← di − ali ; Bl ← Bl − ali ;
13 end
14 end
15 end
16 return W and A ;

2) Charging: The charge is calculated by finding critical
competitor first, which is defined as follow.

Definition 4 (Critical Competitor). The critical competitor
cc(i) ∈ N of tenant i ∈ W is the first tenant, after which
has been selected as a winner by Algorithm 1 given N \ {i} ,
such that the tenant i ’s demand can no longer be satisfied by
the remaining bandwidths.

Now we can show the method to calculate the charge for
the tenant i by distinguishing three cases:

1) If tenant i loses in the auction, then her charge is 0 .
2) If tenant i ∈ W and cc(i) does not exist (denoted by

cc(i) = 0 ), then her charge is p0 .
3) If tenant i ∈ W and there exists a critical competitor

cc(i) , the charge pi of the tenant i is set to pi =
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max{ b̂cc(i)

√
|Mi|

di
+

∑
l∈Mi

clBl
∑

l∈Mi
Bl

, p0}.
Algorithm 2 shows the pseudo-code of SOAR-GDY’s charg-

ing algorithm, and the runtime is O(mn) .
Algorithm 1 is called once to determine the set of winner

and bandwidth reservation, and we need to call Algorithm 2
O(n) times to calculate the charge for each of the winning ten-
ants. Therefore, the total runtime of SOAR-GDY is O(mn2) .

Algorithm 2: SOAR-GDY Charging for Tenant i ∈ W

Input: Vector of bandwidth capacities
#–

B , vector of demands
#–

d ,
sorted list β .

Output: pi .
1 pi ← p0 ;
2 for j = 1 to n do
3 if j 6= i and

∑

l∈Mj
Bl ≥ dj then

4 while dj > 0 do
5 l← argmin

l∈Mj

(cl) ; Mj ←Mj \ {l} ;

6 alj ← min(Bl, dj) ;

7 dj ← dj − alj ; Bl ← Bl − alj ;

8 end
9 if

∑

l∈Mi
Bl < di then

10 pi ← max{ b̂j

√
|Mi|

di
+

∑
l∈Mi

clBl
∑

l∈Mi
Bl

, p0} ;

11 cc(i)← j ; break;
12 end
13 end
14 end
15 return pi ;

B. Analysis

In this section, we prove the strategy-proofness.

Theorem 2. SOAR-GDY is a strategy-proof auction mecha-
nism for cloud bandwidth reservation.

Proof: We first show that for each tenant i ∈ N , bidding
truthfully is her dominant strategy. We distinguish two cases:

• The tenant i wins in the auction and gets utility ui when
bidding truthfully, i.e., bi = vi . If she manipulates her
bid b′i 6= vi , the following two cases may happen:

– The tenant i still wins in the auction. Her utility
does not change, because her critical competitor and
charge are independent on her bid.

– The tenant i turns to loss in the auction. Then, her
utility becomes 0, which is definitely no more than
ui (ui ≥ 0 ).

• The tenant i loses in the auction when bidding truthfully.
Then she must have a critical competitor, and we have

b̂i ≤ b̂cc(i) . Then, her utility ui = 0 . If she still loses
when manipulating her bid, her utility cannot change.
We consider the case that she cheats the bid b′i 6= vi and
becomes a winner. Her utility still cannot be positive:

u′
i = vi − p′i = vi −

b̂cc(i)
√

|Mi|
di

−
∑

l∈Mi
clBl

∑

l∈Mi
Bl

≤ vi −
b̂i
√

|Mi|
di

−
∑

l∈Mi
clBl

∑

l∈Mi
Bl

= vi − bi = 0.

Therefore, the tenant i cannot increase her utility by bidding
any other value than vi , namely, bidding truthfully is her
dominant strategy. So, SOAR-GDY is incentive-compatibility.

Second, we show that for each tenant, truthfully participat-
ing the auction is always better than staying outside, which
results in a utility of 0. It is clear that if tenant i loses in the
auction and gets utility ui = 0 , this is not worse than staying

outside. If the tenant i wins in the auction and gets utility
ui = vi − pi , we further consider two cases:

• The tenant i ’s critical competitor does not exist, and
thus pi = p0 ≤ bi = vi .

• The tenant i has a critical competitor cc(i) . Her charge
pi is no larger than vi .

pi =
b̂cc(i)

√

|Mi|
di

+

∑

l∈Mi
clBl

∑

l∈Mi
Bl

≤ b̂i
√

|Mi|
di

+

∑

l∈Mi
clBl

∑

l∈Mi
Bl

= bi

= vi.

Therefore, SOAR-GDY provides individual-rationality.
Therefore, SOAR-GDY is strategy-proof because it is both

incentive-compatibility and individual-rationality.

V. EVALUATION RESULTS

We implemented SOAR and gave a similar experimental
setup with [8] to evaluate the performance in this section.

Consider a cloud provider with a number of data centers
provides bandwidth reservation to multiple tenants, the data
center’s cost of per unit bandwidth is normalized and uniform-
ly distributed over interval (0, 1] while the tenant’s valuation
on per unit of bandwidth is uniformly distributed over (1, 2] .
Similarly, each tenant’s bandwidth demand is normalized and
range from 0 to 1, and we assume that the bandwidth capacity
of each data center is randomly selected in the range of
(1, 10] . We fix the number of data centers at 5 and 15 ,
respectively, and evaluate the performance of SOAR with the
number of tenants vary from 20 to 300 1. For each simulation
setting, we calculate the results averaged over 1000 rounds.

The following three metrics are used to evaluate perfor-
mance of SOAR. As shown in Fig. 2 and 3, SOAR outper-
forms Nash Equilibrium (NE) method in terms of the three
performance metrics. We also compare SOAR-GDY with the
suboptimal solution of binary programm BP shown in Section
IV achieve by integer programming tools2.

• Social welfare: The definition is given in Definition1.
• Bandwidth satisfaction ratio: Bandwidth satisfaction ra-

tio is the percentage of tenants’ bandwidth demands that
can be satisfied in the auction.

• Bandwidth utilization: Bandwidth utilization is ratio of
the total bandwidth that is utilized in the auction.

In Fig. 2, we show the performance of SOAR-VCG as a
function of the number of tenants. We can see that the social
welfare and bandwidth utilization increases with the number
of tenants, and bandwidth satisfaction ratio decrease. When
there are 15 datacenters and less than 200 tenants, bandwidth
satisfaction ratio exceeds 90% , and the bandwidth utilization
ratio of SOAR-VCG is higher than 90% when there are more
than 180 tenants in the auction. That point indicates the
bandwidth satisfaction tends to be saturated.

Fig. 3 shows evaluation results achieved by SOAR-GDY as
the number of tenants increases. Which is similar to SOAR-
VCG, when the number of datacenter is 15 and the number of

1The ranges of the number of data center can be different from the ones used
here. However, the evaluation results of using different ranges are identical.
Therefore, we only show the results of the above ranges in this paper.

2Since finding the optimal solution for the SOAR-GDY case is NP-hard and
the computation time of 100 rounds is more than an hour, we only calculate
the optimal solution with small-scale bidders.



5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100 120 140 160 180 200 220 240 260 280 300

S
o
ci

al
 W

el
fa

re

Number of tenants

SOAR-VCG (m=5)
SOAR-VCG (m=15)
NE (m=5)
NE (m=15)

(a) Social Welfare

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100 120 140 160 180 200 220 240 260 280 300

B
an

d
w

id
th

 S
at

is
fa

ct
io

n
 R

ad
io

Number of tenants

SOAR-VCG (m=5)
SOAR-VCG (m=15)
NE (m=5)
NE (m=15)

(b) Bandwidth Satisfaction Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100 120 140 160 180 200 220 240 260 280 300

B
an

d
w

id
th

 U
ti

li
za

ti
o
n
 R

ad
io

Number of tenants

SOAR-VCG (m=5)
SOAR-VCG (m=15)
NE (m=5)
NE (m=15)

(c) Bandwidth Utilization

Fig. 2. Performance of SOAR-VCG by varying the number of bidders and datacenters (m).
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Fig. 3. Performance of SOAR-GDY by varying the number of bidders and datacenters (m).

tenants is less than 180 , bandwidth satisfaction ratio SOAR-
GDY exceed 90% , and after that the bandwidth utilization
ratio of it is higher than 80%. We also use lines without
point plots the suboptimal solution in Fig. 3. Compared to
suboptimal solution of binary programm BP , SOAR-GDY
can get more than 93.58% of the optimal solution in general
case. The social welfare achieved by SOAR-GDY is closely
approximated to that of suboptimal solutions, which demon-
strates that the greedy-based bandwidth reservation algorithm
has a high social welfare in most cases.

VI. RELATED WORKS

A number works such as SecondNet [2], Oktopus [1], PRO-
TEUS [9] and Seawall [10], have been proposed to address
the problem of cloud bandwidth allocation and reservation.
Popa et al. propose three allocation policies to navigate
tradeoffs between min-guarantee, high utilization and payment
proportionality requirements for cloud networks sharing [11].

Since the traditional pay-as-you-go model [12] can not
satisfy the needs of online streaming service applications,
new approaches are proposed for the cloud bandwidth al-
location problem. Broker or allocator is proposed to pro-
cesses requests and negotiate the bandwidth prices in [8],
[13]. Several pricing schemes [14]–[16] are also proposed
for cloud resource allocation. In coupled systems without
complicating message-passing, a new iterative approach to
distributed resource allocation was proposed in [17]. A truthful
online auction was design in cloud computing where users
with heterogeneous demands could come and leave on the
fly [18]. The rigorous cooperative game framework has also
been applied to share multi-tenant data center networks [19].
In contrast to their work, we propose a family of strategy-
proof auction mechanisms for cloud bandwidth reservation.
Our approaches not only achieve strategy-proofness, but also
provide guaranteed performance in most of the cases.

VII. CONCLUSION

In this paper, we have modeled the problem of cloud band-
width reservation as a sealed-bid auction and propose SOAR,
a family of strategy-proof auction mechanisms for cloud

bandwidth reservation. Our evaluation results have shown that

SOAR achieves good performance in terms of social welfare,
bandwidth satisfaction ratio, and bandwidth utilization.
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